The Parabola

The basic parabola is $y=x^2$ other graphs of this type are just movements of this basic shape. With knowledge of their movements you should be able to sketch the graph without having to draw up a table first. However, if worst comes to worst drawing up a table and plotting points is a good method to draw any graph.

x	-3	-2	-1	0	1	2	3
y=x ²	y=(-3) ² y=9	y=(-2) ² y=4	y=(-1) ² y=1	y=(0) ² y=0	y=(1) ² y=1	y=(2) ² y=4	y=(3) ² y=9
Coordinate to plot	(-3,9)	(-2,4)	(-1,1)	(0,0)	(1,1)	(2,4)	(3,9)

Example: the basic parabola $y=x^2$

Notice how the values of y are all positive, this is as any number squared results in a positive. This means when we graph the points the graph will be above the x axis.

To Graph

- Plot the points (remember "x is across" and "y is up/down")
- Join with a smooth curve this is not a straight line graph, needs to have a curved bottom

Key Features:

Vertex – The turning point of the graph, in this example it is (0,0)

A parabola is a *symmetrical* graph about the line that goes through the vertex. This graph is symmetrical about the y-axis.

Follows the pattern of:

Out 1 from the vertex, up 1Out 2, up 4since 2²=4Out 3, up 9since 3²=9Out 4, up 16... and so on following the pattern

Out **a** from the vertex, up **a**²

Movements of Parabola - Vertical (up/down)

When the equation is in the form:

Adding a number will shift the graph up by a units e.g. $y=x^2 + 3$ parabola moves up by 3

Try to graph these and state new vertex:

1. $y=x^2 + 4$

New vertex is at (,) The graph moves up/down by?

2. $y=x^2 - 1$

New vertex is at (,) The graph moves up/down by?

3. y=x² + 1

New vertex is at (,) The graph moves up/down by? **Subtracting** shift the graph down by **a** units e.g. **y=x² -2** parabola moves down by 2

HINT: if your stuck try drawing up a table of values to finds points to plot					
i.e.					
	x	y=x ² + a			
	-2				
	-1				
	0				
	1				
	2				
Remember vertex = "turning point"					

Movements of Parabola – Horizontal (left/right)

When the equation is in the form:

NOTE: we find the x intercept when y=0, so we want to find a value of x that will make the bracket = 0 (This will just be the opposite of the value of a, that is why the graph moves the opposite way than what you may think.)

Adding inside the bracket moves the graph left (negative direction)

The graph moves *left* by 3

Try to graph these and state new vertex:

1. $y=(x+2)^2$ New vertex is at (,)

The graph moves left/right by?

- y=(x-4)²
 New vertex is at (,)
 The graph moves left/right by?
- y=(x+4)²
 New vertex is at (,)
 The graph moves left/right by?

Subtracting inside the brackets moves the graph right (positive direction)

<u>HINT</u>: if your stuck try drawing up a table of values to finds points to plot

Choose values for your table of x close to the opposite of the number in the equations

Remember parabolas are symmetrical about the turning point

Vertex will be the opposite of the number

Parabola in factorised form – the intercept method

When the equation is in the form: y=(x+a)(x+b)

DO NOT EXPAND!!!

When y=0 we can find our x intercepts

equations in this form will have 2 x-intercepts one when (x+a)=0 and another when (x+b)=0

EXAMPLE: y = (x - 3)(x + 1)

1. To find x-intercepts we set y=0 0=(x-3)(x+1) this is true if x-3=0 or x+1=0

So x-intercepts are x = 3 and x = -1

2. Vertex: is halfway between so find by adding x-intercepts together and dividing by 2 (3+(-1))÷2=1
So our vertexs x-coordinate will be at x=1
To find the y coordinate we substitute x=1 into the equation
y=(1-3)(1+1)
y=(-2)×2
y=-4
The coordinates of our vertex are (1,-4)

Knowing our *x-intercepts* and the *vertex* we can sketch the graph:

since $2^2=4$ Out 3 from the vertex up 9 since $3^2=9$

Changing the steepness

When the equation is in the form:

If there is a number in front of the x^2 it will either make the graph steeper or flatter When the number is negative it flips the graph so it is upside down

• If the number in front is BIGGER than 1 e.g. 3x² means "3 times the x value squared"

it makes the parabola **steeper** than the basic $y=x^2$

if the number in front is smaller than 1
 e.g. ¼x² means "one quarter of the x value squared"

it makes the parabola **flatter** than the basic $y=x^2$

EXAMPLES:

Parabola summary

For parabolas you need to know how to do the following

• Graph parabolas of the form:

$y = (x + a)^2$	sideways movement
y = x ² + b	up/down movement
$y = (x+a)^2 + b$	Vertex method moves the vertex up/down AND sideways
y = (x+ a)(x+ b)	x-intercept method
$y = ax^2$	The coefficient changes the steepness of the graph

• Identify the key features

x-intercepts	Found when y=0
vertex	"turning point" middle of graph
y-intercepts	Found when x=o